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Abstract
A simple model is developed that predicts the coefficient of rolling friction
for an undriven laboratory cart on a track that is approximately independent
of the mass loaded onto the cart and of the angle of inclination of the track.
The model includes both deformation of the wheels/track and frictional
torque at the axles/bearings. The concept of rolling friction is contrasted with
the static or kinetic friction that in general is also present, such as for a
cylinder or ball rolling along a horizontal or inclined surface.

Introduction
Small rolling carts on metal tracks have become
common in introductory physics laboratories at
universities and secondary schools. Examples
include PASCO’s ‘Collision Cart’, Vernier’s
‘Standard Cart’, PHYWE’s ‘Low Friction Cart’,
and PSSC’s ‘Dynamics Cart’. Nevertheless,
there exists confusion about how to simply and
accurately model the resistance that such carts
encounter when they move on level or inclined
tracks.

For example, two articles [1, 2] refer to
the friction experienced by the carts as ‘kinetic’,
which is incorrect because they roll not slide
along the track. A more recent paper [3] does
not specifically use the adjective ‘kinetic’, but
nevertheless subscripts the coefficient of friction
between the cart and track with the letter ‘k’ which
presumably is an abbreviation for that adjective.
Other authors hedge their bets by simply referring
to the force opposing the motion of the carts as
‘friction’ without a qualifying adjective [4, 5] and
the coefficient of friction by the unsubscripted
symbol ‘μ’ [6], even though most introductory
physics textbooks only denote friction as either
static or kinetic.

Part of the confusion is understandable,
in that static or kinetic friction, under many
circumstances, dominates and hence masks the
rolling friction, which is always present and
distinct from either of these other two kinds of
friction for a rolling object. For example, if a string
is wound around the axle of a rolling cylinder [7]
or of a spool [8] and used to drive its motion, then
static friction usually arises to prevent the object
from slipping. (Depending on how it is pulled,
static friction is not always needed [9], but usually
it is.) However, static friction is not necessarily a
‘resistance’ to motion: in fact, it can point in (as
opposed to against) the direction of motion [10].
In any case it does not dissipate any mechanical
energy because its point of contact at the bottom of
the rolling object has zero instantaneous velocity.
(Zero displacement means zero work done. It is
static after all.) Similarly, a cylinder rolling up or
down an incline is driven by gravity, and a vehicle
(such as a car or bicycle) accelerating along a level
road is driven by a motor or by pedalling. In such
cases, static friction again dominates (assuming
the rolling is without slipping) and can point either
forward or backward relative to the direction of
motion [8]. If slipping does occur, then kinetic
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Rolling friction on a wheeled laboratory cart

Figure 1. Free-body diagram for a cart rolling up an 
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friction will dominate, as is purposely exploited in
some games such as bowling and billiards [11].

In contrast, if a cylinder or ball is freely
rolled (i.e. without being driven by a string
or motor) along a horizontal surface, it will
eventually come to a stop (even if it does not
strike any small bits of dirt or other obstacles).
This slowing will arise even in the absence of
air drag, as one can verify by rolling the object
inside an evacuated bell jar. In the absence of
slipping, the resistive force cannot be ordinary
static friction, as explained in figure 1 of [12]; for
example, if the friction force pointed backward
(to translationally decelerate the object), then it
would simultaneously rotationally accelerate the
cylinder about its centre, which cannot be right!
The object could partially stick to the surface and
have to be ‘peeled’ away from it and thereby get
slowed down [13], but that cannot be a complete
explanation, as nonadhesive rolling objects also
slow down. A simple but comprehensive model
of rolling friction is developed in this article.

General theory of rolling friction
Rolling friction on the wheels of a cart can be
modelled using the ideas of Krasner [12]. There
are two contributions to the friction: deformation
of the wheels and/or track, and the torque at the
axles (or bearings) opposing the rotation of the
wheels. The deformation will be represented here
as a flattening of the wheels, although in general
it can also arise from the cart creating a slight

Figure 2. Enlarged view of the contact forces and 
axle torque at the wheels. This diagram has been 

The axle has been labelled as the origin O and the 
effective point of contact of the forces between the 
wheel and track as C, separated horizontally from 
each other by a distance D. The flattening of the 
wheel has been exaggerated for clarity. The 
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in figure 1.
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depression in (or bowing of) the track out of which
it has to continuously roll.

Consider a cart of mass m that is free rolling
up an incline, as sketched in figure 1. The total
frictional force f on the cart from the track is
assumed to oppose the direction of motion υ of
the cart. Similarly, the total frictional torque τ at
the four bearings opposes the direction of rotation
ω of the wheels. Force components perpendicular
to the incline must balance so that

N = mg cos θ (1)

where N is the sum of the normal forces at all
four wheels. (In general, N , f and τ will not
be equally divided among the four wheels.) Force
components along the incline imply

mg sin θ + f = ma. (2)

The rotational form of Newton’s second law about
point O in the enlarged view in figure 2 is

N D + τ − f R = Iα (3)

where the angular acceleration of the wheels is
α = a/R assuming they do not slip, and the
sum of the moments of inertia of the four wheels
is I = γ M R2. Here M is the total mass
of the four wheels (each of radius R) and γ is
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a mass distribution factor, of the order of 0.5
if the wheels are approximately uniform discs.
Solving equation (2) for a and substituting it into
equation (3) leads to

N D + τ − f R = γ M R(g sin θ + f/m). (4)

Now suppose we can relate the frictional force
on the cart to the normal force on the entire cart
via a coefficient of friction μ (labelled without
subscripts for the moment),

f = μN = μmg cos θ (5)

using equation (1) to get the second equality.
Similarly suppose that the frictional torque on the
axles can be related to the normal component of
the gravitational load on them from the body of
the cart without the wheels, (m − M)g cos θ , so
that

τ = kr(m − M)g cos θ (6)

where r is the radius of the axles and k is a
(dimensionless) coefficient of frictional torque. It
is assumed that μ and k are independent of speed.
In support of that assumption, measurements of
a ball on an incline [14] indicate that μ has less
than a 10% dependence on speed for angular
velocities up to 1.5 rad s−1. Given that the
wheels of a PASCO cart have a diameter of
2R = 2.54 ± 0.01 cm, this limiting angular
velocity requires that the cart travels slower than
2 m s−1, which is true in typical introductory
lab experiments. (For example, in figure 2
of [6], the cart speed never exceeds 0.6 m s−1.)
Evidence that k is independent of speed comes
from measurements of the frictional torque on a
physical pendulum [15].

Substituting equations (1), (5) and (6) into (4)
gives rise to

μ =
D
R + k r

R (1 − M
m ) − γ M

m tan θ

1 + γ M
m

(7)

after a little algebra. Equation (7) is a universal
formula describing free rolling up an incline in
the absence of air resistance. (One can verify
that air drag is negligible compared to rolling
friction at the speeds of motion of typical lab
carts by substituting appropriate values into the
formula given in example 6.8 of [16].) As a check,
this formula correctly reduces to two previously
published expressions as follows.

(1) Consider a single round object (so that
M = m) rolling on a horizontal surface (so that
θ = 0). Notice that the term proportional to k in
equation (7) then drops out, as expected since there
is no axle. One finds that μ = (D/R)/(1 + γ ),
which is the coefficient of rolling friction (usually
written as μr) that explains why the object will
eventually roll to a stop [17]. This coefficient
agrees with Krasner’s equation (5) after correcting
the typo whereby he multiplied (D/R) and (1+γ )

instead of dividing them [12].
(2) Again consider a single round object

(so that M = m) but this time rolling on
an incline. Suppose the object and track are
sufficiently rigid that they cannot deform (so that
D = 0). Now equation (7) simplifies to μ =
− tan θ/(1 + γ −1). The minus sign implies that
the frictional force is directed up rather than down
the incline. This upward direction is necessary so
that friction will angularly decelerate the object
as it rolls up the ramp; the friction in this case
is static not rolling [8]. We see that μ is not a
constant independent of θ , but instead its value
automatically adjusts (up to a maximum value
of μs if slipping is not to occur). It is more
conventional to write fs = μN = −mg sin θ/(1+
γ −1) from equation (5) and not refer directly to
μ at all. Substituting this expression for fs into
equation (2) leads to the familiar result a =
g sin θ/(1 + γ ) for the translational acceleration
of a rolling object on an inclined plane.

As a specific example, consider a standard
PASCO Collision Cart (model number ME-
9454). Then equation (7) can be numerically
approximated as follows. The wheels are hard
plastic discs so that γ ≈ 1

2 . I dismantled a cart
and measured the plastic part of a wheel to have
a mass of 1.74 ± 0.02 g and a bearing to have a
mass of 0.72 ± 0.01 g. Adding these together and
multiplying by 4 gives the mass of all the rotating
parts as M = 9.84 ± 0.12 g. (Only a portion of
each bearing rotates, so this value is actually an
upper limit on M .) The total mass of a cart with its
wheels is m = 0.5015 ± 0.0004 kg. Consequently
M/m ≈ 0.02 � 1 and equation (7) becomes

μ ≈ D

R
+ k

r

R
− γ

M

m
tan θ. (8)

Experimentally it was found that μ = 0.0065 ±
0.0002 by rolling a cart along a level track and
fitting a straight line to the speed squared as a
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function of position, both measured using a motion
detector [18]. (The same value of μ was found
for a variety of different cart speeds, up to at
least 0.7 m s−1.) However, for values of θ up
to 5◦ (which is about the largest track tilt one
would realistically use for a free rolling cart),
γ (M/m) tan θ � 0.0009 and thus the final term
in equation (8) only makes a small contribution to
the overall sum. Neglecting it results in

μr ≈ D + kr

R
(9)

where a subscript ‘r’ has been added to denote
that this is now the coefficient of rolling friction.
This final expression is independent of the angle
of inclination, justifying the experimental method
mentioned above in which the coefficient was
measured on a horizontal track. It is also
independent of the mass loading of a cart.
Equation (9) is a simple, dimensionally correct
sum of contributions due to contact deformation
and axle friction.

It is left as an exercise for the reader (or her
students) to redo the analysis presented here for
the case of a cart free rolling down (rather than up)
an incline. The directions of the arrows for υ, ω, τ

and f need to be reversed in figures 1 and 2, and
point C needs to be moved to the downhill (rather
than the uphill) side of the wheel, a distance D to
the left of point O. Equation (7) then becomes

μ =
D
R + k r

R (1 − M
m ) + γ M

m tan θ

1 + γ M
m

(10)

which differs only in the last sign in the numerator.
(That difference can be rationalized simply as a
change in the sign of θ to transform an uphill
to a downhill inclination.) But that last term is
dropped in deriving equation (9) and hence that
final expression for μr is valid for both uphill and
downhill motions of a cart.

Conclusions
A universal equation (7) has been found for the
ratio of the effective frictional force to the normal
force on an object freely rolling along a horizontal
or inclined track. If the object is a standard lab
cart, this ratio is equal to the coefficient of rolling
friction μr for realistic angles of inclination. The
fundamental reason that rolling friction dominates
the static friction in this case is that the wheels

(which are the rotating components) make up only
a few per cent of the total mass of the cart.

On the other hand, if the object is a single
rotating object such as a cylinder or ball, then there
can exist both a significant static frictional force of
magnitude fs = mg sin θ/(1 + γ −1) and rolling
frictional force fr = mg cos θ(D/R)/(1 + γ ),
according to equations (5) and (7). Their ratio is

fs

fr
= γ

R

D
tan θ. (11)

Normally D is much less than R (see figure 2)
and the static friction dominates unless the track is
horizontal or nearly so (i.e. θ ≈ 0). However, both
are actually present, as illustrated in figure 10.20
of [19]. Rolling friction manifests itself as a
loss of mechanical energy as a ball descends
a ramp, because there is no such dissipation
under the idealized conditions usually discussed
in the classroom. In particular, if the familiar
demonstration of a marble on a loop-the-loop track
is performed [20], one quickly discovers that the
marble has to be released from a height well above
the idealized prediction of 2.7 times the radius of
the loop. (Much closer agreement with idealized
theory is obtained if the demonstration is instead
performed using an interrupted pendulum [21],
since air drag is much weaker than rolling friction.)
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